Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
tan(x) /tan(x) / 2 \ \
x *|------ + \1 + tan (x)/*log(x)|
\ x /
$$x^{\tan{\left (x \right )}} \left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} + \frac{1}{x} \tan{\left (x \right )}\right)$$
/ 2 / 2 \ \
tan(x) |/tan(x) / 2 \ \ tan(x) 2*\1 + tan (x)/ / 2 \ |
x *||------ + \1 + tan (x)/*log(x)| - ------ + --------------- + 2*\1 + tan (x)/*log(x)*tan(x)|
|\ x / 2 x |
\ x /
$$x^{\tan{\left (x \right )}} \left(\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} + \frac{1}{x} \tan{\left (x \right )}\right)^{2} + 2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} \tan{\left (x \right )} + \frac{1}{x} \left(2 \tan^{2}{\left (x \right )} + 2\right) - \frac{1}{x^{2}} \tan{\left (x \right )}\right)$$
/ 3 / 2 \ 2 / / 2 \ \ / 2 \ \
tan(x) |/tan(x) / 2 \ \ 3*\1 + tan (x)/ 2*tan(x) / 2 \ /tan(x) / 2 \ \ | tan(x) 2*\1 + tan (x)/ / 2 \ | 2 / 2 \ 6*\1 + tan (x)/*tan(x)|
x *||------ + \1 + tan (x)/*log(x)| - --------------- + -------- + 2*\1 + tan (x)/ *log(x) + 3*|------ + \1 + tan (x)/*log(x)|*|- ------ + --------------- + 2*\1 + tan (x)/*log(x)*tan(x)| + 4*tan (x)*\1 + tan (x)/*log(x) + ----------------------|
|\ x / 2 3 \ x / | 2 x | x |
\ x x \ x / /
$$x^{\tan{\left (x \right )}} \left(\left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} + \frac{1}{x} \tan{\left (x \right )}\right)^{3} + 3 \left(\left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} + \frac{1}{x} \tan{\left (x \right )}\right) \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} \tan{\left (x \right )} + \frac{1}{x} \left(2 \tan^{2}{\left (x \right )} + 2\right) - \frac{1}{x^{2}} \tan{\left (x \right )}\right) + 2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \log{\left (x \right )} + 4 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} \tan^{2}{\left (x \right )} + \frac{6}{x} \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} - \frac{1}{x^{2}} \left(3 \tan^{2}{\left (x \right )} + 3\right) + \frac{2}{x^{3}} \tan{\left (x \right )}\right)$$