Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
3 / 3 \
tan (x) |tan (x) 2 / 2 \ |
x *|------- + tan (x)*\3 + 3*tan (x)/*log(x)|
\ x /
$$x^{\tan^{3}{\left (x \right )}} \left(\left(3 \tan^{2}{\left (x \right )} + 3\right) \log{\left (x \right )} \tan^{2}{\left (x \right )} + \frac{1}{x} \tan^{3}{\left (x \right )}\right)$$
3 / 2 2 2 / 2 \ \
tan (x) |/tan(x) / 2 \ \ 3 tan (x) / 2 \ 6*\1 + tan (x)/*tan(x) 2 / 2 \ |
x *||------ + 3*\1 + tan (x)/*log(x)| *tan (x) - ------- + 6*\1 + tan (x)/ *log(x) + ---------------------- + 6*tan (x)*\1 + tan (x)/*log(x)|*tan(x)
|\ x / 2 x |
\ x /
$$x^{\tan^{3}{\left (x \right )}} \left(\left(3 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} + \frac{1}{x} \tan{\left (x \right )}\right)^{2} \tan^{3}{\left (x \right )} + 6 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \log{\left (x \right )} + 6 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} \tan^{2}{\left (x \right )} + \frac{6}{x} \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} - \frac{1}{x^{2}} \tan^{2}{\left (x \right )}\right) \tan{\left (x \right )}$$
/ 2 \
3 | 3 3 3 2 / 2 \ / 2 2 / 2 \ \ / 2 \ 3 / 2 \ 2 |
tan (x) |/tan(x) / 2 \ \ 6 2*tan (x) / 2 \ 9*tan (x)*\1 + tan (x)/ 3 /tan(x) / 2 \ \ | tan (x) / 2 \ 6*\1 + tan (x)/*tan(x) 2 / 2 \ | 4 / 2 \ 18*\1 + tan (x)/ *tan(x) 18*tan (x)*\1 + tan (x)/ / 2 \ 2 |
x *||------ + 3*\1 + tan (x)/*log(x)| *tan (x) + --------- + 6*\1 + tan (x)/ *log(x) - ----------------------- + 3*tan (x)*|------ + 3*\1 + tan (x)/*log(x)|*|- ------- + 6*\1 + tan (x)/ *log(x) + ---------------------- + 6*tan (x)*\1 + tan (x)/*log(x)| + 12*tan (x)*\1 + tan (x)/*log(x) + ------------------------ + ------------------------ + 42*\1 + tan (x)/ *tan (x)*log(x)|
|\ x / 3 2 \ x / | 2 x | x x |
\ x x \ x / /
$$x^{\tan^{3}{\left (x \right )}} \left(\left(3 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} + \frac{1}{x} \tan{\left (x \right )}\right)^{3} \tan^{6}{\left (x \right )} + 3 \left(3 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} + \frac{1}{x} \tan{\left (x \right )}\right) \left(6 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \log{\left (x \right )} + 6 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} \tan^{2}{\left (x \right )} + \frac{6}{x} \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} - \frac{1}{x^{2}} \tan^{2}{\left (x \right )}\right) \tan^{3}{\left (x \right )} + 6 \left(\tan^{2}{\left (x \right )} + 1\right)^{3} \log{\left (x \right )} + 42 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \log{\left (x \right )} \tan^{2}{\left (x \right )} + 12 \left(\tan^{2}{\left (x \right )} + 1\right) \log{\left (x \right )} \tan^{4}{\left (x \right )} + \frac{18}{x} \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \tan{\left (x \right )} + \frac{18}{x} \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{3}{\left (x \right )} - \frac{9}{x^{2}} \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (x \right )} + \frac{2}{x^{3}} \tan^{3}{\left (x \right )}\right)$$