Найти производную y' = f'(x) = x^x^x (х в степени х в степени х) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная x^x^x

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 / x\
 \x /
x    
$$x^{x^{x}}$$
  / / x\\
d | \x /|
--\x    /
dx       
$$\frac{d}{d x} x^{x^{x}}$$
Подробное решение
  1. Не могу найти шаги в поиске этой производной.

    Но производная


Ответ:

График
Первая производная [src]
 / x\ / x                         \
 \x / |x     x                    |
x    *|-- + x *(1 + log(x))*log(x)|
      \x                          /
$$x^{x^{x}} \left(x^{x} \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{x^{x}}{x}\right)$$
Вторая производная [src]
    / x\ /                                            2                                        \
 x  \x / |  1    log(x)    x /1                      \                2          2*(1 + log(x))|
x *x    *|- -- + ------ + x *|- + (1 + log(x))*log(x)|  + (1 + log(x)) *log(x) + --------------|
         |   2     x         \x                      /                                 x       |
         \  x                                                                                  /
$$x^{x} x^{x^{x}} \left(x^{x} \left(\left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{1}{x}\right)^{2} + \left(\log{\left(x \right)} + 1\right)^{2} \log{\left(x \right)} + \frac{2 \left(\log{\left(x \right)} + 1\right)}{x} + \frac{\log{\left(x \right)}}{x} - \frac{1}{x^{2}}\right)$$
Третья производная [src]
    / x\ /                                        3                                                                  2                                                                                                                 \
 x  \x / |2    3     2*x /1                      \                3          log(x)   3*(1 + log(x))   3*(1 + log(x))    3*(1 + log(x))*log(x)      x /1                      \ /  1    log(x)               2          2*(1 + log(x))\|
x *x    *|-- + -- + x   *|- + (1 + log(x))*log(x)|  + (1 + log(x)) *log(x) - ------ - -------------- + --------------- + --------------------- + 3*x *|- + (1 + log(x))*log(x)|*|- -- + ------ + (1 + log(x)) *log(x) + --------------||
         | 3    2        \x                      /                              2            2                x                    x                  \x                      / |   2     x                                   x       ||
         \x    x                                                               x            x                                                                                   \  x                                                  //
$$x^{x} x^{x^{x}} \left(x^{2 x} \left(\left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{1}{x}\right)^{3} + 3 x^{x} \left(\left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{1}{x}\right) \left(\left(\log{\left(x \right)} + 1\right)^{2} \log{\left(x \right)} + \frac{2 \left(\log{\left(x \right)} + 1\right)}{x} + \frac{\log{\left(x \right)}}{x} - \frac{1}{x^{2}}\right) + \left(\log{\left(x \right)} + 1\right)^{3} \log{\left(x \right)} + \frac{3 \left(\log{\left(x \right)} + 1\right)^{2}}{x} + \frac{3 \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)}}{x} - \frac{3 \left(\log{\left(x \right)} + 1\right)}{x^{2}} - \frac{\log{\left(x \right)}}{x^{2}} + \frac{3}{x^{2}} + \frac{2}{x^{3}}\right)$$
График
Производная x^x^x /media/krcore-image-pods/hash/derivative/4/51/35db269608d8e333d63dff621cdcb.png